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Abstract Nanoparticles may be taken up into cells via
endocytotic processes whereby the foreign particles are
encapsulated in vesicles formed by lipid bilayers. After
uptake into these endocytic vesicles, intracellular targeting
processes and vesicle fusion might cause transfer of the
vesicle cargo into other vesicle types, e.g., early or late
endosomes, lysosomes, or others. In addition, nanoparticles
might be taken up as single particles or larger agglomerates
and the agglomeration state of the particles might change
during vesicle processing. In this study, liposomes are
regarded as simple models for intracellular vesicles. We
compared the energetic balance between two liposomes
encapsulating each a single silica nanoparticle and a large
liposome containing two silica nanoparticles. Analytical
expressions were derived that show how the energy of the
system depends on the particle size and the distance be-
tween the particles. We found that the electrostatic contri-
butions to the total energy of the system are negligibly
small. In contrast, the van der Waals term strongly favors
arrangements where the liposome snugly fits around the
nanoparticle(s). Thus the two separated small liposomes

have a more favorable energy than a larger liposome encap-
sulating two nanoparticles.
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Introduction

The uptake of nanoparticles into living cells depends on the
physicochemical properties of the particles such as size,
electrostatic charge, and their hydrophobic/hydrophilic
properties [1, 2]. Besides the material properties, also the
cell type, the endocytosis mechanism [3–5], as well as
components of the surrounding medium, such as proteins
influence the uptake of nanoparticles into cells [6–8]. Upon
binding to the plasma membrane, the nanoparticle may
induce the formation of a vesicle so that endocytosis takes
place. Once the particles are inside the cell, either in the
cytoplasm or the nucleus, agglomeration of nanoparticles
may occur [9–11].

Silica (SiO2) is an inorganic material that is central for
many applications in nanotechnology. In the biomedical
field it may serve as a delivery system for drugs and genes
[12, 13]. For example, it has been shown that surface-
functionalized silica nanoparticles can deliver DNA
[14–19] and drugs [13, 20–22] into animal cells and tissues.
Schübbe and co-workers [11] investigated the location of
SiO2 nanoparticles of 32 nm and 83 nm in diameter within
Caco-2 cells as a model of human intestinal cells and found
that both types can enter into the cytoplasm. With increasing
incubation time, the particles move toward the nucleus of
the cells. The data indicated that close to the nucleus,
besides single particles, also larger agglomerates of multiple
particles are present. Using A549 cells as model for human
type II alveolar epithelial cells, Schumann et al. [23],
recorded the movement of silica nanoparticles present with-
in endocytotic vesicles derived from the plasmic membrane
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and other vesicles like lysosomes and large lamellar bodies,
a special vesicle type, responsible for the transport of pul-
monary surfactant to the cellular surface [24]. Some of these
vesicles encapsulated at least two particle agglomerates
[23]. The experimental data indicates binding of the parti-
cles to the inner vesicle membrane, which has also been
found by others [25]. Malvindi et al. [26] found that cellular
uptake of silica particles with sizes of 25, 60 and 115 nm
that carried either negative or positive charges was indepen-
dent of the surface charge.

A liposome is primarily composed of a lipid bilayer and it
is used in this study as a model for membrane derived
vesicles. It is well-known that the bending energy of the
lipid shell does not depend on the liposome radius [27].
Over decades, the encapsulation of drugs or genes in lipo-
somes has been studied for efficient and safe delivery sys-
tems. Foldvari et al. [28] proposed a hypothetical model for
liposome-skin interaction and found in clinical testing that
the drugs encapsulated in liposome provide sustained re-
lease. Puyal et al. [29] found that cationic liposomes have a
relatively low cellular toxicity and are suitable as gene
carrier. Moreover, Mohanraj et al. [30] studied a hybrid
silica-liposome nanocapsule containing insulin and showed
that the release rate of insulin from silica coated liposomes
was reduced in comparison to uncoated liposomes. Thus a
specifically engineered nanoparticle layer may allow the
controlled release.

During the past two decades, various atomistic molecular
mechanics force fields have been parameterized enabling
the dynamic simulation of lipid bilayers [31–33]. Recently,
several coarse grained models were introduced for lipid
membranes [34–38] to cope with the large dimensions of
membrane compartments such as liposomes. For example,
Marrink et al. [35] described the parametrization of a coarse
grained model for the dipalmitoylphosphatidylcholine
(DPPC) lipid system. Furthermore, Shelley et al. [36] used
a coarse grained model to study the structure and self-
assembly of phospholipids bilayers. Another coarse-grained
force field for zwitterionic lipids based on fitted thermody-
namic and structural properties was developed by Shinoda et
al. [38]. In the present paper, we apply the MARTINI force
field for lipids proposed by Marrink et al. [35].

Besides force field descriptions for the energy of molec-
ular conformations that use either atomistic or coarse
grained descriptions, such systems can also be studied using
the continuum approach. Here one assumes that discrete
atomic arrangements can be replaced by a uniform atomic
distribution, so that the total interaction energy between two
molecules can be evaluated using an integral technique. The
continuum approach has been successfully applied by a
number of authors for determining the molecular interaction
energy of nanostructures, see for example Girifalco et al.
[39], Hodak and Girifalco [40], Cox et al. [41, 42], and

Baowan et al. [43]. In the first two studies [39, 40], analyt-
ical expressions were derived for the potential energies for
various arrangements of a carbon nanotube and a C60 ful-
lerene. Cox et al. [41, 42] used elementary mechanical
principles together with the continuum approach to study
the oscillatory behavior of a C60 fullerene inside carbon
nanotubes of various sizes. The structural behavior and
oscillatory frequency obtained from their study are in good
agreement with molecular dynamics simulations of Qian et
al. [44] and Liu et al. [45]. Further, this approach has been
adopted by one of the present authors [43] to study the
penetration of a C60 fullerene through a lipid bilayer, where
a relation between particle size, hole size and the location of
the particle in the bilayer was determined.

In this paper, we aim to determine the equilibrium con-
figurations between two simple arrangements, (i) two lipo-
somes containing each a single silica nanoparticle and (ii) a
larger liposome encapsulating two silica nanoparticles.
Moreover, the energetic stabilities of the two systems
around the minima are examined. By comparing the relative
energy difference between these two systems, we assume
that the energy contributions arising from the environment,
such as the proteins and ions in the media, largely cancel
out, so that they are not considered here. We apply the
Coulombic potential including the Born equation to account
for the solvation energy and the Lennard-Jones potential
together with the continuum approximation to determine
the total energies for the two systems of silica nanoparticles
encapsulated in liposome(s). The surface and the volume
integrals are utilized to analytically express the model cal-
culations. Both liposome and silica nanoparticle are
modeled as perfect spheres. In the following section, we
introduce the energy terms including the electrostatic and
the van der Waals energies, and the continuum approach that
is used to determine the total energy of the system. The
mathematical derivations for the interaction energy are giv-
en in section Results. Furthermore, numerical results for the
two systems are presented in section Numerical results
followed by a short discussion. Finally, mathematical details
for the total energy and the use of the constants are given in
Appendix.

Methods

This study aims at computing the energy of systems involv-
ing inorganic nanoparticles of several tens of nanometers in
size and an organic lipid bilayer large enough to enclose
them. This is a challenging topic since it involves a biomo-
lecular lipid system as well as inorganic particles. Only a
few authors have previously derived parameterizations for
such hybrid systems [15, 22, 46]. The mere size of these
systems renders an atomistic modeling approach very
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expensive. Even a coarse grained particle approach would
involve computing around three hundred thousands of
pairwise interactions. Instead, we apply a much more effi-
cient continuum approach that considers the same typical
non-bonded interactions. Since we consider relative energy
differences between two different molecular arrangements,
we may assume that many interactions will cancel out. For
example, we consider the case that the outer surface area of
the large liposome is twice as large as that of the small
liposomes. Hence, we do not consider the interactions of
the lipid bilayer with the surrounding solvent because these
can be considered as being proportional to the liposome
surface, so that they will largely cancel out when taking
the difference between both systems.

The MARTINI force field [35] is used to determine the
molecular interaction energy between a liposome and an
embedded silica nanoparticle. Both electrostatic and van
der Waals energies are taken into account utilizing Coulom-
bic and Lennard-Jones potential functions. The electrostatic
energy for molecules carrying partial charges and the elec-
trostatic part of their solvation free energy can be modeled
using the sum of Coulombic function and Born Eq. [47].
These are given by

U ¼ qiqj
4p�0�r

1

ρ
� 1

8p
1

�i
� 1

�r

� �
qiqj
fGB

;

where ρ denotes the distance between two typical charge
centers, qi and qj are partial point charges, �0 denotes the
vacuum permittivity of the value 8.85×10−12CV−1m−1, and
�i and �r are relative dielectric constants. The generalized

Born equation (fBG) is given by fGB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2e�ρ2 4a2ð Þ=

p
;

where a is the van der Waals radius of a charged particle,
and for ρ ≫ a we may approximate fGB = ρ. Then, the
electrostatic term becomes

U ¼ qiqj
4p

1

�r�0
� 1

2
1� 1

�r

� �� �
1

ρ
;

where we take ei=1.
The standard 6–12 Lennard-Jones function is used to

describe the van der Waals energy of the system, and it is
given by

Φ ¼ � A

ρ6
þ B

ρ12
¼ 4� � σ

ρ

� �6

þ σ
ρ

� �12
" #

;

where A and B are attractive and repulsive Lennard-Jones
constants, respectively, σ is the van der Waals diameter and
� denotes the van der Waals well depth. The Lennard-Jones
constants between two atomic or coarse grained species can
be obtained using the empirical combining laws or mixing
rules [48] as �12 ¼ ffiffiffiffiffiffiffiffi

�1�2
p

and σ12 ¼ σ1 þ σ2ð Þ 2= , where 1
and 2 refer to the respective individual species.

Using the continuum approach [41–43], where the atoms
(or coarse-grained particles) at discrete locations of the
molecule are averaged over a surface or a volume, the
molecular interatomic energy is obtained by calculating in-
tegrals over the surface or the volume of each molecule,
given by

E ¼ η1η2

Z
S1

Z
S2

qiqj
4p

1

�r�0
� 1

2
1� 1

�r

� �� �
1

ρ
þ � A

ρ6
þ B

ρ12

� �� �
dS2dS1;

where η1 and η2 represent the average surface density or the
average volume density of atoms on each molecule. For the
surface and volume integrals computed in this work it is
convenient to define the integral In as

In ¼
R
S1

R
S2
ρ�2ndS2dS1; n ¼ 1=2; 3; 6: ð1Þ

Written in this way, the integral corresponds to scaled
versions of the above energy terms.

The Coulombic and Lennard-Jones constants for silica
are taken from the work of Cruz-Chu et al. [49] whereas
those for the lipid bilayer are taken from the work of
Marrink et al. [35]. Amorphous silica nanoparticles are
composed of SiO2, with the silicon atoms in tetrahedral
coordination with four oxygen atoms and a random connec-
tion of the tetrahedra. Upon contact with water, silanol
groups (SiOH) are formed on the particle surface [50, 51].
Following the notation of the MARTINI model, a silica
nanoparticle is assumed to be a spherical molecule with a
medium-strength polarity of 3 (P3) where the parameters for
P3 are given in Table 1 of Marrink et al. [35]. Further, its
inside is assumed to comprised of small SiO2 beads carrying
no charges whereas the outer surface of the solvated
nanoparticle is partially covered by silanol (−SiOH) groups
[49, 52]. Following the work of Cruz-Chu et al. [49], the
densities of the dangling atoms of silicon and oxygen are
approximately 1 nm−2. Therefore, to guarantee the neu-
tral charge of the silica nanoparticle, we treat the hy-
droxyl group as a united atom and make it slightly less
polar than the -OH group of a water molecule in typical
atomic force fields. Thus, the partial charges for the
silicon atom and the hydroxyl group of silanol groups
are taken as +0.3|e| and –0.3|e|, respectively.

A liposome is assumed to be composed of dipalmitoyl-
phosphatidylcholine (DPPC) lipids that are represented in
the MARTINI force field by a head group, consisting of
choline (Q0) and phosphate (Qa) groups, a glycerol group
(Na) and a tail group (C1) [35]. In this paper, the spacing
between the two layers of lipids is assumed to be 0.334 nm
[43]. The positions for choline, phosphate and glycerol
groups are taken as ±2.165 nm, ±2.118 nm and ±
1.768 nm, respectively, from the center of the bilayer fol-
lowing the work of Petrache et al. [53], compare the insert
diagram of Fig. 2. The Coulombic and Lennard-Jones
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parameters for both silica nanoparticle and liposome used
here are summarized in Table 1.

Further, the number of lipid molecules per liposome is
determined as the sum of the lipids in the outer and inner
layers, and it is given by

NlipidsðrÞ ¼ 4pr2 þ 4p r � hð Þ2
A

;

where r is the outer radius of the liposome, h denotes the
thickness of the bilayer, which is taken to be 4.336 nm, and
A represents the lipid head group area, which is 0.64 nm2 for
DPPC lipids [35]. The coarse grained model assigns two
interaction sites to the head group, one for the choline group
and one for the phosphate group, two interaction sites to the
intermediate layer of the glycerol group and eight interac-
tion sites to the tail group [35]. We assume that the inter-
mediate group of the liposome can be represented as a
spherical surface, so that the average atomic surface density
for the intermediate group, ηsi, is given by 2NlipidsðrÞ= 4pr2ð Þ.
Here, the factor 2 reflects that two interaction sites are used
for the intermediate layer in the MARTINI force field. Also
the tail group is approximated as a spherical shell with a
thickness of a tail length ‘, and the average atomic volume
density for the tail group, ηvt, is given by 8NlipidsðrÞ=
4pr3ð Þ=3½ �. Again, the factor 8 reflects the eight interaction

sites of the tail group. Along the same line, the head group
can be modeled either as a spherical surface or as a spherical
shell with a thickness of 0.4 nm. Consequently, both average
atomic surface and average atomic volume densities of the
head group, ηsh and ηvh, can be determined in the same way
as described for the intermediate and the tail groups.

Here, the average atomic surface density of silica, ηsilica,
may be obtained as 3/[4 p (0.161)2] nm−2, where 3 is the
number of atoms in a molecule, and assuming that the Si atom
is located at the center whereby the bond length between Si
and O is 0.161 nm. One third of this value is assigned to the
distribution of silicon atoms, and two thirds of this value
represent the atomic distribution of oxygen atoms.

We note that the silica nanoparticle is introduced here as a
model particle to illustrate the physical properties such as

size and charge of nanoparticles. Once the particle type is
replaced by another material, only the parameters and con-
stants need to be changed, but the mathematical expressions
derived in the Results section remain the same.

Results

In this study, a surface integration technique is applied to
evaluate the total energy for one or two nanoparticles en-
capsulated in a liposome. Both SiO2 nanoparticle and lipo-
some are modeled as perfect spheres where the atoms on
each molecule are uniformly distributed over the surface or
the volume of the sphere. First, we consider the interaction
between a single atom and a sphere using the surface inte-
gral approach. Then the single atom is assumed to belong to
the other molecules. Five different possible molecular con-
figurations are shown in Fig. 1. Either the surface or the
volume integral is used to determine the total energy of the
system.

Coulombic function

For this we consider the integral In defined in Eq. (1) with
n ¼ 1=2 . In the case of a spherical surface with radius a
interacting with a single atom, as depicted in Fig. 1(a), the
distance from a typical surface element on the sphere to the atom

is given byρ2 ¼ acosθsinfð Þ2 þ asinθsinfð Þ2 þ acosf� dð Þ2,
and we may deduce

I1=2 ¼
R
s
1
ρdS ¼ R p

�p

R p
0

a2sinf

a2þd2�2adcosfð Þ1=2dfdθ

¼ pa
d
R dþað Þ2

d�að Þ2
1ffiffi
t

p dt

¼ 4pa2 1
d ;

ð2Þ

where δ is the distance from the center of the sphere to the atom.

Here, we substituted t ¼ a2 þ d2 � 2adcosf to transform ϕ to t
in the first integration. The finding that the Coulombic interaction
decays with the inverse distance 1/δ is a text book example for
the electrostatic interaction around a charged sphere. The scaling
with the square of the particle radius a reflects that, assuming a

Table 1 Coulombic and
Lennard-Jones parameters for
silica nanoparticle and liposome
used in this model

Atom type q (C) ε (kJ mol−1) σ (nm) Dangling atom density (nm−2)

Si 0 |e| 1.297 0.4295 –

O 0 |e| 0.628 0.3500 –

Sisilanol +0.30 |e| 1.297 0.4295 1.00

Osilanol −0.30 |e| 0.628 0.3500 1.00

Qa −1.00 |e| 5.600 0.4700 –

Qo +1.00 |e| 5.000 0.4700 –

Na – 4.500 0.4700 –

C1 – 2.300 0.4700 –
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constant surface density of charge centers, the number of charge
centers is proportional to the particle surface. Next we aim to
integrate 1/δ over another spherical structure for the offset and the
concentric configurations.

In the case of a pair of offset spheres as shown in Fig. 1(b),
the distance δ from the center of the first sphere to a typical
surface element on the second sphere of radius b is given by

d2 ¼ bcosθsinfð Þ2 þ bsinθsinfð Þ2 þ bcosf� Zð Þ2 . Hence,
the total electrostatic energy can be written as

U ¼ qiqj
4p

1

�r�0
� 1

2
1� 1

�r

� �� �
KQ
1=2 a; bð Þ;

where

KQ
1=2 a; bð Þ ¼ 4pa2

R
S
1
ddS ¼ 4pa2

R p
�p

R p
0

b2sinf

b2þZ2�2bZcosfð Þ1=2dfdθ

¼ 16p2a2b2 1
Z ;

ð3Þ
and Z is the distance between their centers. This case can be
easily understood as an extension of the first case.

In the case of concentric spheres as shown in Fig. 1(c),
we start from (2) and take δ = b, and we may deduce

LQ1=2 a; bð Þ ¼ 4pa2
Z
S

1

d
dS

¼ 4pa2
Z p

�p

Z p

0

b2sinf
b

dfdθ ¼ 16p2a2b: ð4Þ

When the inner sphere is displaced, see Fig. 1(d), the energy
remains unchanged. In this case, we have d2 ¼ b2 þ x2 � 2bx
cosf and then we may deduce

MQ
1=2 a; bð Þ ¼ 4pa2

R
S
1
ddS ¼ 4pa2

R p
�p

R p
0

b2sinf

b2þx2�2bxcosfð Þ1=2dfdθ

¼ 16p2a2b:

ð5Þ

We see that LQ1=2 a; bð Þ defined by (4) and MQ
1=2 a; bð Þ

defined by (5) are equal. Consequently further in the text

we will use LQ1=2 a; bð Þ to refer to MQ
1=2 a; bð Þ. This is a well-

known result since the electrostatic potential inside an
isotropically charged sphere is constant.

The two cases shown in Fig. 1(e) and (f) with a finite
thickness of the surface yield the same results for the Cou-
lombic potential.

Lennard-jones function

We begin by considering the integral In defined by (1) for n=3,
6 and for a spherical molecule of radius a centered at the
origin and a point located at (0,0,δ), as shown in Fig. 1(a).
Following the work by Cox et al. [41], it is convenient to
express the surface integral I3 and I6 in terms of Jn which is

defined by Jn ¼ 1= d2 � a2
	 
n

where n is a positive integer
corresponding to the power of the polynomials appearing in
I3 and I6 defined by (6) and (7), respectively. This gives

I3 Jn½ � ¼ 4pa2 J3 þ 2a2J4
	 


; ð6Þ

I6 Jn½ � ¼ 4

5
pa2 5J6 þ 80a2J7 þ 336a4J8 þ 512a6J9 þ 256a8J10

	 

:

ð7Þ
Next, we consider the offset spheres as shown in Fig. 1(b)

where we need to evaluate a surface integral for Jn. Similar
to the case of the Coulombic function, the distance δ is given

by d2 ¼ b2 þ Z2 � 2bZcosf. Thus we may deduce

KLJ
n a; bð Þ ¼ R

S JndS ¼ R p
�p

R p
0

b2sinf
b2þZ2�2bZcosf�a2ð Þndfdθ

¼ pb
Z n�1ð Þ

1

Z�bð Þ2�a2½ �n�1 � 1

Zþbð Þ2�a2½ �n�1

� �
;

ð8Þ

a b c

d e f

Fig. 1 Schematic structures for
(a) a sphere interacting with a
single atom, (b) offset spheres,
(c) concentric spheres and (d)
offset of concentric spheres for
the outer surface integral, and
(e) concentric spheres and (f)
offset of concentric spheres for
the outer volume integral
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where Z is the distance between the two centers of the two
spheres and Z > b.

Figure 1(c) shows a schematic model for the surface
interaction between two concentric spheres. In this case
the distance δ = b, and the integration is straightforward
performed as

LLJn a; bð Þ ¼ R
S JndS ¼ R p

�p

R p
0

b2sinf
b2�a2ð Þndfdθ

¼ 4pb2

b2�a2ð Þn :
ð9Þ

Once the inner sphere moves away from the center with
distance x as depicted in Fig. 1(d), the distance from the
center of the inner sphere to a typical point on the surface of

the outer sphere is given by d2 ¼ b2 þ x2 � 2bxcosf. By
using the surface integral approach, we may deduce

MLJ
n a; bð Þ ¼ R

S JndS ¼ R p
�p

R p
0

b2sinf
b2þx2�2bxcosf�a2ð Þndfdθ

¼ pb
x n�1ð Þ

1

b�xð Þ2�a2½ �n�1 � 1

bþxð Þ2�a2½ �n�1

� �
;

ð10Þ
where x represents the distance between their centers and
x < b. This equation has the same form as Eq. (8) when
replacing x by Z.

In the case of the spherical volume integral for the outer
sphere as shown in Fig. 1(e), the distance δ = r and we may
deduce

NLJ
n a; b; ‘ð Þ ¼ R

S JndS ¼ R p
�p

R bþ‘

b

R p
0

r2sinf
r2�a2ð Þndfdrdθ

¼ 4p �1ð Þn
a2n�3

R sin�1 bþ‘ð Þ=a½ �
sin�1 b=að Þ

1
cos2n�1ðtÞ � 1

cos2n�3ðtÞ
h i

dt;

ð11Þ
where ‘ is the thickness of the outer ring, and for any given
value of n, an analytic expression of NLJ

n a; b; ‘ð Þ can be
obtained.

Figure 1(f) illustrates the configuration when the inner
sphere moves away from the origin about a distance x, so that

d2 ¼ r2 þ x2 � 2rxcosf . We need to evaluate the volume

integral for the outer sphere for r 2 b; bþ ‘ð Þ which can be
written as

OLJ
n a; b; ‘ð Þ ¼ R

S JndS ¼ R p
�p

R bþ‘
b

R p
0

r2sinf
r2þx2�2rxcosf�a2ð Þndfdrdθ

¼ p
x n�1ð Þ

R bþ‘

b r 1

r�xð Þ2�a2½ �n�1 � 1

rþxð Þ2�a2½ �n�1

� �
dr:

ð12Þ
In the following sections, the mathematical expressions

obtained in section Coulombic function and section
Lennard-jones function will be combined to compare the total
energy for a liposome encapsulating a silica nanoparticle and a
liposome encapsulating two silica nanoparticles, respectively.

A liposome encapsulating a silica nanoparticle

In this section, we aim to find the equilibrium configuration
for a liposome encapsulating a silica nanoparticle by minimiz-
ing the energy of the system. The schematic model is shown in
Fig. 2. We consider cases where the nanoparticle is either
concentric or displaced from the center toward the lipid mem-
brane and the inner radius of the liposome, meaning the
position of the inward pointing choline group, is denoted by
b1. The nanoparticle has a radius a which describes where the
probability distribution of silicon atoms on the spherical sur-
face decays to zero. Due to the fact that the bond length
between silicon and oxygen in silica is around 0.161 nm
[49], the probability distribution of oxygen atoms (or hydroxyl
group) of the SiO2 nanoparticles is assumed to extend to the
spherical surface of radius a+0.161 nm. The fine-structure of
the lipid bilayer is shown in the insert diagram of Fig. 2.
Therefore, the interaction energy of the system consists of:

1. The electrostatic interaction between the inner and outer

lipid head groups and the nanoparticle, based on LQ1=2
a; bð Þ given by Eq. (4).

2. The van der Waals interaction between the inner and
outer lipid head groups and the nanoparticle, based on
NLJ
n a; b; ‘ð Þ given by (11).

Fig. 2 Model for a silica
nanoparticle encapsulated in a
liposome. The right picture
illustrates how the structural
dimensions of the lipid bilayer
are considered

2464 J Mol Model (2013) 19:2459–2472



3. The van der Waals interaction between the two
intermediate lipid layers and the nanoparticle, based
on LLJn ða; bÞ given by (9).

4. The van der Waals interaction between the inner and
outer lipid tail groups and the nanoparticle, based on

NLJ
n ða; b; ‘Þ defined by (11).

All the energy contributions will be scaled by appropriate
coefficients according to the Coulomb, Born and Lennard-
Jones equations and by the proportion of the atomic species
on the molecules to yield the total energy of the system.

A liposome encapsulating two silica nanoparticles

In the rectangular Cartesian coordinate system, the liposome is
assumed to be centered at the origin, and the two silica
nanoparticles are centered on the x-axis at distances x and -x
from the origin. The physical dimensions for both liposome
and silica are as described in section “A liposome encapsulat-

ing a silica nanoparticle” and the inner radius of the liposome
is denoted by b2, see Fig. 3. Therefore, the total energy for one
liposome encapsulating two SiO2 nanoparticles comprises:

1. The electrostatic interaction between the inner and outer
lipid head groups and the two nanoparticles, based on

LQ1=2 a; bð Þ given by (4).

2. The electrostatic interaction between two offset spheri-

cal SiO2 nanoparticles, based on KQ
1=2 a; bð Þ defined by

(3) and Z=2x.
3. The van der Waals interaction between the inner and

outer lipid head groups and the two nanoparticles, based
on OLJ

n a; b; ‘ð Þ defined by (12).
4. The van der Waals interaction between the two interme-

diate lipid layers and the two nanoparticles, based on

MLJ
n a; bð Þ given by (10).

5. The van der Waals interaction between the inner and
outer lipid tail groups and the two nanoparticles, based
on OLJ

n a; b; ‘ð Þ defined by (12).
6. The van der Waals interaction between two offset spher-

ical silica nanoparticles, based on KLJ
n a; bð Þ defined by

(8) and Z=2x.

We note that terms 1., 3., 4. and 5. will be multiplied by 2
to represent the fact that there are two nanoparticles encap-
sulated inside a liposome. Again, the total energy of the
system can be obtained by scaling each energy contribution
by either Coulombic and Born equation or Lennard-Jones
coefficients and by the proportion of the atomic species on
the molecules.

Two liposomes encapsulating a silica nanoparticle each

As for the other two cases, we derive the equilibrium posi-
tion of two identical liposomes encapsulating SiO2

nanoparticles by minimizing the energy of the system. The
schematic model is shown in Fig. 4. The model description

Fig. 3 Model for one liposome encapsulating two SiO2 nanoparticles

Fig. 4 Model for two silica
nanoparticles encapsulated each
in a liposome
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for the single liposome encapsulating a silica nanoparticle is
as described in section A liposome encapsulating a silica
nanoparticle where b3 denotes the inner radius of the lipo-
some. Therefore, the interaction energy of the system con-
sists of twice the interaction between each nanoparticle and
the surrounding liposome as well as of:

1. The electrostatic interaction between two offset spheri-

cal liposomes, based on KQ
1=2 a; bð Þ defined by (3).

2. The van der Waals interaction between two offset spher-
ical liposomes, based on KLJ

n a; bð Þ defined by (8).

Note that we neglect here the interactions between the
two nanoparticles because they are small compared to the
interaction energy between the two liposomes.

Numerical results

Using the analytical expressions derived in Results, we now
present numerical energies for three systems consisting of (i)
a liposome encapsulating a silica nanoparticle, (ii) a large
liposome encapsulating two silica nanoparticles and (iii) two

a

c

e

b

d

f

Fig. 5 Energy per lipid for a liposome encapsulating a silica nanoparticle of radius 16 nm that is placed either concentric or displaced from the
liposome center by distances of 0, 0.5, 1.0 and 1.5 nm with three assumed �r values which are �r=1 (a), (b), �r=42.5 (c), (d) and �r=80 (e), (f)
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liposomes each encapsulating a silica nanoparticle. Follow-
ing the work of Schübbe et al. [11], we assume that the SiO2

nanoparticles have a radius of a=16 nm. The charges on the
zwitterionic DPPC lipids are taken as −1|e| for the phosphate
and +1|e| for the choline groups. Further, in order to com-
pare the systems of one large liposome and two small
liposomes, the surface area of the larger liposome is set
equal to the sum of the two smaller surface areas.

Figure 5 shows the energy profiles per lipid for a silica
nanoparticle of 16 nm radius encapsulated inside a lipo-
some. The particle is assumed to be either concentric or
displaced from the liposome center by distances of 0, 0.5,
1.0 and 1.5 nm. Here we consider three values of the relative
dielectric constant of the solvent, namely �r=1 for vacuum,
see Fig. 5(a) and (b), �r=42.5 for glycerol at 25 °C, see
Fig. 5(c) and (d), and �=80 for water, see Fig. 5(e) and (f).

As expected, the van der Waals interactions did not depend
on the value of dielectric constant but it was sensitive to the
position of the nanoparticle, see Fig. 5(a), (c) and (e). On
assuming that nanoparticle-solvent/membrane-solvent and
solvent-solvent/nanoparticle-membrane interactions are
balancing each other, we may set the van der Waals energy to
zero and consider only the electrostatic energy. In vacuum, we
found that the electrostatic energy of the system takes on large
values and gives rise to a positive total energy of the system.
This implies that the encapsulation process will not occur in the
vacuum. In the other cases mimicking glycerol or water sol-
vents, the electrostatic interaction was found to be close to zero

due to the overall neutral charges of both liposome and silica
nanoparticle. We note that there is a singularity of the electro-
static energy for the concentric configuration at x=0.

Furthermore, we found that the concentric configuration
gives rise to the most stable arrangement among the four
cases determined here, where the optimum radius of the
liposome b1 is approximately 16.31 nm around the nano-
particle of 16 nm radius. The total energy level decreases as
the nanoparticle moves away from the liposome center.
Moreover, we observed that the charge values of the lipo-
some will not change the equilibrium location of the parti-
cles but will only change the magnitude of the energy level.

In order to compare the systems of one large liposome and
two small liposomes, the surface area of the larger liposome is
set to be equal to the sum of the two smaller surface areas. The
radius of the large liposome is denoted by b2 and that for the
small liposomes is represented by b3. Here, the energy profile
for the system in water is graphically shown as a representa-
tive system where the dielectric constant r is taken to be 80 as
the relative permittivity of water.

The van der Waals and the electrostatic energies for one
large liposome encapsulating two silica nanoparticles are
depicted in Fig. 6(a) for four assumed radii of the liposome
and the fixed radius of the nanoparticle. Here, the two
nanoparticles are allowed to move only in the x-direction
and they are assumed to be symmetrically displaced from
the liposome center. We obtained a positive energy from the
electrostatic part, which reflects the repulsion energy between

Table 2 Numerical results for a
larger liposome encapsulating
two silica nanoparticles where
xmin (nm) is the distance between
the liposome center and the sili-
ca center in the positive x-direc-
tion at the equilibrium position

b2 �r=1 �r=42.5 �r=80

Emin
2 xmin x 2 Emin

2
xmin x 2 Emin

2
xmin x 2

35.00 −873.44 18.77 0.23 −1586.82 18.77 0.23 −1594.24 18.76 0.24
40.00 −880.26 23.77 0.23 −1443.08 23.76 0.24 −1450.23 23.76 0.24
45.00 −869.67 28.78 0.22 −1336.95 28.78 0.22 −1342.64 28.77 0.23
50.00 −875.50 33.77 0.23 −1273.00 33.77 0.23 −1279.20 33.78 0.22

a b

Fig. 6 (a) Electrostatic and van der Waals energies and (b) total energy profiles for a larger liposome encapsulating two silica nanoparticles with �r=80
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two identical silica nanoparticles that does of course not
depend on the radius of the liposome. In terms of the van
der Waals interaction, the energy at the equilibrium location is
negative and it is the main energy contribution to the system.

Figure 6(b) shows the total energy of the system, and the
equilibrium location is determined at the global minimum
energyEmin

2 (kJ mol−1). The total energy is plotted as a function
of the distance x (nm), which is defined as the distance be-
tween the liposome center and the silica nanoparticle center in
the positive direction. Further, we define x 2 (nm) as the closest
spacing between the inner surface of the liposome and the
surface of the nanoparticle. The value of x 2 is approximately
0.23 nm for the cases studied here. The numerical results
where one liposome encapsulates two silica nanoparticles for
�r=1,42.5 and 80 are presented in Table 2. We found that the
total energy at the equilibrium location is negative. The larger
the liposome, the smaller in magnitude is the well depth.

Finally, we considered the case of two smaller liposomes
containing one nanoparticle each. Figure 7 shows the energy
profiles arising from the electrostatic and the van der Waals
interactions. The minima of the van der Waals energy reflect
configurations where the two liposomes touch. Reducing
the distance between the liposome centers leads to penetra-
tions and thus to a sharp increase of the van der Waals
energy. Similar to the case of a liposome encapsulating a
nanoparticle, the electrostatic energy is close to zero due to

the overall neutral charges on the two molecules. At the
equilibrium position, the well depth of the van der Waals
energy increases as the liposome radius b3 is increased. This
reflects the increase in the amount of interacting matter.

The energy profiles and the numerical results for two
liposomes encapsulating a silica nanoparticle are presented
in Fig. 7 and Table 3, respectively. The b3 values listed in
Table 3 are chosen appropriately so that the small lipo-
somes have half the surface as the larger liposomes con-
sidered in Table 2. The equilibrium position between the
two liposomes is obtained where the minimum energy is
denoted by Emin

3 (kJ mol−1). Moreover, the closest spacing
ξ3 (nm) between two outer surfaces of the two liposomes
is in the range of 0.39–0.42 nm. The energy minima of
Table 3 are at least twice as favorable as those of Table 2.
Whereas the two separated liposomes have deeper and
deeper energy minima for increasing radii, that of the large
liposome with two nanoparticles becomes more unfavor-
able with increasing size.

As mentioned before, the summation of the total energy
ignores a number of important contributions that are assumed
to cancel out when considering the relative energy difference
of the two systems. We found that the system of two separate
liposomes has a more favorable energy suggesting that it may
be observable in the experiment. The fix position of a single
silica molecule at the center of a liposome is a best fit config-
uration since the spacing between the two surfaces is equal
throughout the spheres. However, in the case of two silica
particles inside a large spherical liposome, the spacings in y-
and z-directions are larger than that in x-direction (axial direc-
tion), and therefore, at a typical point on the surface of silica,
the repulsive and the attractive energies do not balance.

Our finding is in good agreement with the experimental
study carried out by Chu et al. [54]. For short incubation
times, they found a single silica nanoparticle in endo-
lysosomes. Upon increasing the incubation duration, small
organelles containing the nanoparticles will join together and
form a cluster of nanoparticles in a larger endo-lysosome.

Discussion

This study presents an energetic evaluation for the encapsu-
lation of one or two silica nanoparticles in a liposome. For

Table 3 Numerical results for
two liposomes encapsulating
each a silica nanoparticle where
Zmin (nm) represents the distance
between two centers of the lipo-
somes at the equilibrium
position

b3 �r=1 �r=42.5 �r=80

Emin
3

Zmin x 3 Emin
3

Zmin x 3 Emin
3

Zmin x 3

24.75 −2611.21 58.56 0.39 −3294.67 58.56 0.39 −3296.65 58.58 0.41
28.28 −3213.79 65.64 0.41 −3829.17 65.65 0.42 −3830.08 65.64 0.41
31.82 −3808.65 72.72 0.41 −4351.23 72.71 0.40 −4358.97 72.71 0.40
35.36 −4395.02 79.78 0.39 −4888.32 79.78 0.39 −4891.53 79.79 0.40

Fig. 7 Electrostatic and van der Waals energies for two liposomes
encapsulating each a silica nanoparticle with �r=80. Note that the
electrostatic energy is at most 8.8 kJ mol−1
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this, the electrostatic and the van der Waals energies were
evaluated using the Coulombic and the Lennard-Jones func-
tions, respectively. To allow a mathematical treatment, the
continuum approach assumes that atoms in a molecule are
uniformly distributed over a surface or throughout the vol-
ume of the molecule, and then an integration approach was
applied to evaluate the total energy of the system. We
assumed that silica nanoparticles can be modeled as perfect
spheres consisting of SiO2 beads, and the liposome is com-
posed of a dipalmitoylphosphatidylcholine (DPPC) lipid
bilayer. For this we derived analytical expressions to de-
scribe how the various energies depend on the particle sizes
and the distances between particles.

We considered two systems that are (i) one liposome
containing two silica nanoparticles and (ii) two lipo-
somes each encapsulating a silica nanoparticle. The total
surface areas of the liposomes in the two systems were
assumed to be equal where the silica radius is fixed to
be 16 nm. The latter system has a lower energy level
because the lipid shells fit more snugly around the
nanoparticle. Therefore the encapsulation of single silica
molecule entity in small liposomes may be found in
experiments.

We found that the mutual compensation of the elec-
trostatic dipoles on the lipid head groups and on the
nanoparticle surface make the overall electrostatic contri-
bution negligibly small. The balance of the van der
Waals interactions does not consider the compensating
interactions of solvent molecules. Hence, the touching
configurations of nanoparticles with liposomes and
among each other are preferred. Future work should
aim at deriving a continuum model for the van der Waals
interactions exerted by different types of solvent. It is
well known that under physiological ion concentration of

100–150 mM, the ions and about four ordered water
layers will form a counter-ion cloud that completely
screens the membrane potential and even overcompen-
sates the effect of the lipid charges [55]. Here, we
neglected such atomistic effects. They could certainly
be integrated in the continuum description used here by
adjusting the attractive and the repulsive Lennard-Jones
constants. However, we emphasize that this work consid-
ered particle dimensions at a much larger scale. It would
be highly desirable if suitable experimental data become
available on the binding constants of nanoparticles to
biological membranes that could be used for calibrating
the computational results presented here.

Our work thus could be viewed as a first step toward the
study of transport behavior of nanoparticles through or
inside cells where general analytic expressions for the total
molecular energy of the system are obtained.
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Appendix

The expressions of the interaction energy for both Coulom-
bic and Lennard-Jones potentials are given in this appendix.

A: Electrostatic energy

The electrostatic energy between the inner and the outer
head groups and the nanoparticle, utilizing double surface
integrals for concentric spheres or for offset of concentric
spheres, is given by

Q1 a; bð Þ ¼ DηshðbÞe2
4p

1
�0�r

� 1
2 1� 1

�r

� �h i
1
2 0:3ð Þð1ÞLQ1=2 a; bð Þ

h
þ1

2 �0:3ð Þð1ÞLQ1=2 aþ 0:161; bð Þ þ 1
2 0:3ð Þ �1ð ÞLQ1=2 a; bþ 0:05ð Þ

þ1
2 �0:3ð Þ �1ð ÞLQ1=2 aþ 0:161; bþ 0:05ð Þ þ 1

2 0:3ð Þð1ÞLQ1=2 a; bþ 4:336ð Þ
þ1

2 �0:3ð Þð1ÞLQ1=2 aþ 0:161; bþ 4:336ð Þ þ 1
2 0:3ð Þ �1ð ÞLQ1=2 a; bþ 4:286ð Þ

þ 1
2 �0:3ð Þ �1ð ÞLQ1=2 aþ 0:161; bþ 42:86ð Þ

i
;

ðA1Þ

where e denotes an elementary charge, D represents a dan-
gling atom density of 1 nm−2 for both silicon and oxygen
and LQ1=2 a; bð Þ is given by (4). The rational coefficients come
from the proportional content of 1/2 choline and 1/2 phos-
phate groups in the head group. The charge values are as
given in Table 1.

The electrostatic energy between two offset spheres for
the SiO2 nanoparticles is given by

Q2ðaÞ ¼ D2e2

4p
1

�0�r
� 1

2 1� 1
�r

� �h i
0:3ð Þ 0:3ð ÞKQ

1=2 a; að Þ
h

þ �0:3ð Þ �0:3ð ÞKQ
1=2 aþ 0:161; aþ 0:161ð Þ

þ2 0:3ð Þ �0:3ð ÞKQ
1=2 a; aþ 0:161ð Þ

i
;

ðA2Þ

where KQ
1=2 a; bð Þ is given by (3), and a and a+0.161 denote

the radii of the probability distribution of silicon and oxygen
atoms, respectively.
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The electrostatic energy between two offset spherical
liposomes is given by

Q3 a; bð Þ ¼ Q*
3 b; bþ 0:05ð Þ þ Q*

3 bþ 4:286; bþ 4:336ð Þ
þ2Q**

3 b; bþ 0:05; bþ 4:286; bþ 4:336ð Þ;
ðA3Þ

where

Q*
3 a; bð Þ ¼ ηshðaÞηshðbÞe2

4p
1

�0�r
� 1

2 1� 1
�r

� �h i
1
4ð1Þð1ÞKQ

1=2 a; að Þ
h

þ1
4 �1ð Þ �1ð ÞKQ

1=2 b; bð Þ þ 2 1
4

	 
ð1Þ �1ð ÞKQ
1=2 a; bð Þ

i
;

and

Q**
3 a; bð Þ ¼ ηshðaÞηshðdÞe2

4p
1

�0�r
� 1

2 1� 1
�r

� �h i
1
4ð1Þð1ÞKQ

1=2 a; dð Þ
h

þ 1
4 �1ð Þ �1ð ÞKQ

1=2 b; cð Þ þ 1
4 ð1Þ �1ð ÞKQ

1=2 a; cð Þ
þ 1

4 �1ð Þð1ÞKQ
1=2 b; dð Þ

i
;

and KQ
1=2 a; bð Þ is defined by (3).

B: van der Waals energy

The van der Waals energy between a head group and the
nanoparticle utilizing a surface integral for SiO2 of radius a
and a volume integral for the head group of the inner radius
b and of the thickness 0.4 nm is given by

P1 a; bð Þ ¼ ηsilicaηvhðbÞ 1
6 �ASi�QaI3 NLJ

n a; b; 0:4ð Þ �þ BSi�QaI6 NLJ
n a; b; 0:4ð Þ �	 


þ1
6 �ASi�QoI3 NLJ

n a; b; 0:4ð Þ �þ BSi�QoI6 NLJ
n a; b; 0:4ð Þ �	 


þ2
6 �AO�QaI3 NLJ

n a; b; 0:4ð Þ �þ BO�QaI6 NLJ
n a; b; 0:4ð Þ �	 


þ2
6 �AO�QoI3 NLJ

n a; b; 0:4ð Þ �þ BO�QoI6 NLJ
n a; b; 0:4ð Þ �	 
�

;

ðB1Þ

where A1−2 and B1−2 are the Lennard-Jones attractive
and repulsive constants, respectively, obtained by the
mixing rule. The function NLJ

n a; b; 0:4ð Þ is defined by
(11) where n is a positive integer corresponding to the
power of the polynomials appearing in integrals I3 and
I6 defined by (6) and (7). Again, the rational coeffi-
cients come from the proportional content of 1/2 cho-
line and 1/2 phosphate groups in the head group, and
of 1/3 silicon and 2/3 oxygen atoms in the silica
nanoparticle.

The van der Waals energy between the intermediate
layer and the nanoparticle utilizing double surface in-

tegrals for concentric spheres where the radius of SiO2

(intermediate layer) is assumed to be a (b) is given by

P2 a; bð Þ ¼ ηsilicaηsiðbÞ 1
3 �ASi�NaI3 LLJn a; bð Þ �þ BSi�NaI6 LLJn a; bð Þ �	 


þ2
3 �AO�NaI3 LLJn a; bð Þ �þ BO�NaI6 LLJn a; bð Þ �	 
�

;

ðB2Þ
where LLJn a; bð Þ is given by (9) and n is a positive integer
corresponding to the power of I3 and I6 defined by (6) and (7).

The van der Waals energy between the tail group and the
nanoparticle utilizing a surface integral for SiO2 of radius a
and a volume integral for the tail group of the inner radius b
and of the thickness 1.6 nm is given by

P3 a; bð Þ ¼ ηsilicaηvtðbÞ 1
3 �ASi�C1 I3 NLJ

n a; b; 1:6ð Þ �þ BSi�C1 I6 NLJ
n a; b; 1:6ð Þ �	 


þ2
3 �AO�C1 I3 NLJ

n a; b; 1:6ð Þ �þ BO�C1 I6 NLJ
n a; b; 1:6ð Þ �	 
�

;
ðB3Þ

where NLJ
n a; b; 1:6ð Þ is defined by (11) with corresponding

values of n.
In the case when the inner sphere moves away from the

origin to the distance x, the van der Waals energy between a

head group and the inner nanoparticle utilizing a surface
integral for SiO2 of radius a and a volume integral for the
head group of inner radius b and of thickness 0.4 nm is
given by

P4 a; bð Þ ¼ ηsilicaηvhðbÞ 1
6 �ASi�QaI3 OLJ

n a; b; 0:4ð Þ �þ BSi�QaI6 OLJ
n a; b; 0:4ð Þ �	 


þ1
6 �ASi�QoI3 OLJ

n a; b; 0:4ð Þ �þ BSi�QoI6 OLJ
n a; b; 0:4ð Þ �	 


þ2
6 �AO�QaI3 OLJ

n a; b; 0:4ð Þ �þ BO�QaI6 OLJ
n a; b; 0:4ð Þ �	 


þ2
6 �AO�QoI3 OLJ

n a; b; 0:4ð Þ �þ BO�QoI6 OLJ
n a; b; 0:4ð Þ �	 
�

;

ðB4Þ

where OLJ
n a; b; 0:4ð Þ is defined by (12) and n is a

positive integer corresponding to the power of the
polynomials appearing in integrals I3 and I6 defined by
(6) and (7).
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The van der Waals energy between the intermediate layer
and the nanoparticle utilizing double surface integrals for an

offset of concentric sphere shown in Fig. 1(d), with the radius
of SiO2 (intermediate layer) assumed to be a (b) is given by

P5 a; bð Þ¼ ηsilicaηsiðbÞ 1
3 �ASi�Na I3 MLJ

n a; bð Þ �þ BSi�Na I6 MLJ
n a; bð Þ �	 
 þ2

3 �AO�Na I3 MLJ
n a; bð Þ �þ BO�Na I6 MLJ

n a; bð Þ �	 
�
; ðB5Þ

where MLJ
n a; bð Þ is given by (10) and n is a positive integer

corresponding to the power of I3 and I6 defined by (6) and (7).
Once the silica nanoparticle moves away from the

origin by distance x, the van der Waals energy between

the tail group and the nanoparticle utilizing a surface
integral for SiO2 of radius a and a volume integral for
the tail group of the inner radius b and of the thickness
1.6 nm is given by

P6 a; bð Þ ¼ ηsilicaηvtðbÞ 1
3 �ASi�C1 I3 OLJ

n a; b; 1:6ð Þ �þ BSi�C1 I6 OLJ
n a; b; 1:6ð Þ �	 


þ2
3 �AO�C1 I3 OLJ

n a; b; 1:6ð Þ �þ BO�C1 I6 OLJ
n a; b; 1:6ð Þ �	 
�

;
ðB6Þ

where OLJ
n a; b; 1:6ð Þ is defined by (12) with corresponding

values of n.
The van der Waals energy between two offset spheres for

the SiO2 nanoparticles is given by

P7 a; bð Þ ¼ η2silica
1
9 �ASi�SiI3 KLJ

n a; að Þ �þ BSi�SiI6 KLJ
n a; að Þ �	 


þ4
9 �AO�OI3 KLJ

n b; bð Þ �þ BO�OI6 KLJ
n b; bð Þ �	 


þ2 2
9

	 
 �ASi�OI3 KLJ
n a; bð Þ �þ BSi�OI6 KLJ

n a; bð Þ �	 
�
;

ðB7Þ
where KLJ

n a; bð Þ is defined by (8) with corresponding values
of n appearing in (6) and (7), and a and b represent the radii
of the probability distribution of silicon and oxygen atoms,
respectively, in silica nanoparticle.

The van der Waals energy between two offset spheres of
liposomes encapsulating silica nanoparticles is given by

P8 a; bð Þ ¼ ηshðaÞηshðbÞ 1
4 �AQa�QaI3 KLJ

n a; að Þ �þ BQa�QaI6 KLJ
n a; að Þ �	 


þ1
4 �AQo�QoI3 KLJ

n b; bð Þ �þ BQo�QoI6 KLJ
n b; bð Þ �	 


þ2 1
4

	 
 �AQa�QoI3 KLJ
n a; bð Þ �þ BQa�QoI6 KLJ

n a; bð Þ �	 
�
;

ðB8Þ
where KLJ

n a; bð Þ is defined by (8) with corresponding values
of n appearing in (6) and (7), and a and b denote the radii of
choline and phosphate groups, respectively.
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